# Image Compression

#### Preview

- Methods of compressing data prior to storage and / or transmission are of significant practical and commercial
- Image compression addresses the problem of reducing the amount of data required to a digital image.
- The underlying basis of the reduction process is the removal of redundant data.

#### Fundamentals

- The data compression refers to the process of reducing the amount of data required to represent a given quantity of information.
- The difference of data and information.
- Data are the means by which information is conveyed.
- Data redundancy is a central issue in digital image compression

#### Fundamentals

The relative data redundancy RD :

$$R_D = 1 - \frac{1}{C_R}$$

Where CR is compression ratio .

$$C_R = \frac{n_1}{n_2}$$

n1, n2 donate the number of information – carrying units in two data set that represent the same information .

n1=n2CR =1RD =0n1 contains no redundant datan2 << n1</td>CR  $\rightarrow \infty$ RD $\rightarrow 1$ significant compress & High redundant datan2 >> n1CR  $\rightarrow 0$ RD $\rightarrow -\infty$ n2 contains much more data than n1undesirable case

CR=10 every 10 information in n1 represented by 1 bit in n2, n1 has 90% redundancy

#### 3 basic Data redundancies

#### Coding Redundancy .

#### Spatial and Temporal Redundancy.

• i.e. Video sequence (Correlated pixels are not repeated.)

#### Irrelevant Information.

Information that ignored by human visual system

### Coding Redundancy

 Lets assume, that a discrete random variable rk in the interval [0, 1] represents the gray levels of an image and each rk occurs with probability

 $P_r(r_K)$ 

$$P_r(r_K) = \frac{n_K}{n}$$
 k=0,1,2,....L-1

Where L is the number gray levels,

 $\mathbf{N}_{\mathbf{K}}$  is the number of times that the  $\mathbf{K}^{\text{th}}$  gray level appears in image .

n is the total number of pixel in the image .

### Coding Redundancy

The average length of the code words assigned to the various gray level values

$$L_{avg} = \sum_{K=0}^{L-1} l(r_K) p_r(r_K)$$

where  $l(r_k)$  no. lof bits used to represent each gray  $p_r(r_k)$  probability that gray level occurs



| r <sub>k</sub> | $p_r(r_k)$ | Code 1 | $l_1(r_k)$ | Code 2 | $l_2(r_k)$ |
|----------------|------------|--------|------------|--------|------------|
| $r_0 = 0$      | 0.19       | 000    | 3          | 11     | 2          |
| $r_1 = 1/7$    | 0.25       | 001    | 3          | 01     | 2          |
| $r_2 = 2/7$    | 0.21       | 010    | 3          | 10     | 2          |
| $r_3 = 3/7$    | 0.16       | 011    | 3          | 001    | 3          |
| $r_4 = 4/7$    | 0.08       | 100    | 3          | 0001   | 4          |
| $r_5 = 5/7$    | 0.06       | 101    | 3          | 00001  | 5          |
| $r_6 = 6/7$    | 0.03       | 110    | 3          | 000001 | 6          |
| $r_7 = 1$      | 0.02       | 111    | 3          | 000000 | 6          |

#### TABLE 8.1

Example of variable-length coding.

$$L_{avg} = \sum l(r_K) p_r(r_K)$$

= 2(0.19) + 2(0.25) + 2(0.21) + 3(0.16) + 4(0.08)+ 5(0.06) + 6(0.03) + 6(0.02)= 2.7bits.

### Example

- The resulting compression ratio  $C_R$  is 3/2.7 or 1.11.
- Thus approximately 10% of the data resulting from the use of code 1 is redundant.
- The exact level of redundancy can be determine from

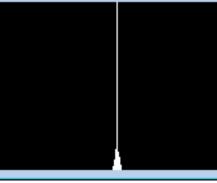
$$R_D = 1 - \frac{1}{1.11} = 0.099$$

### Spatial and Temporal redundancy

- Each line has the same intensity
- All 256 intensity are of equal probability.
- Pixels intensity are independent of each other
- Pixels are correlated vertically
- Pixels intensity can be predicted from their
- Neighbor intensities, so the information carried
- By one pixel is small.



Histogram


#### Irrelevant Information

- Information that ignored by HVS are obvious candidates for omission.
- Original size is 256X256X8
- All are seems to be of the same color
- Compression =256X256X8/8

= 65536:1

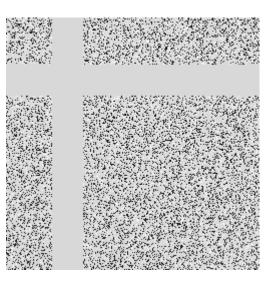



Fig0801(c).tif\_Hist4



#### Irrelevant Information

- this type of redundancy is different from the other 2 types
- Its elimination is possible because the information itself is not essential for HVS.
- Its removal referred to <u>Quantization</u>
- This means mapping of a broad range of intensity into limited range
- Quantization is irreversible operation.



#### Equalized Histogram

#### How do we measure information?

- What is the information content of a message/image?
- What is the minimum amount of data that is sufficient to describe completely an image without loss of information?

### Modeling Information

Information generation is assumed to be a probabilistic process.

Idea: associate information with probability!

A random event *E* with probability P(E) contains:

$$I(E) = log(\frac{1}{P(E)}) = -log(P(E))$$
 units of information

<u>Note:</u> I(E)=0 when P(E)=1 The event always occurs

How much information does a pixel contain?

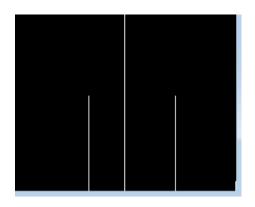
Suppose that gray level values are generated by a random variable, then  $r_k$  contains:

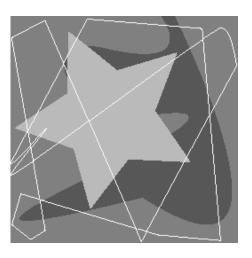
$$I(r_k) = -log(P(r_k))$$
 units of information!

How much information does an image contain?

#### Average information content of an image:




using 
$$I(r_k) = -\log(P(r_k))$$
  
Entropy  $H = -\sum_{k=0}^{L-1} P(r_k)\log(P(r_k))$  units/pixel


It is not possible to code an image with fewer than H bits/pixel

(assumes statistically independent random events)

#### Example:

- $H = -[.25 \log_2 0.25 + .47 \log_2 0.47 + .47 \log_2 0.4$
- .25 log<sub>2</sub> 0.25 + .03 log<sub>2</sub> 0.03]
- = [-0.25(-2) + .47(-1.09) + .25(-2) + .03(-5.06)]
- = 1.6614 bits/pixel





What about H for the second type of redundancy?

### Fidelity Criteria

#### Objective fidelity criterion

Loss of information – compress – decompress .

# Subjective fidelity criteria

Quality of image .

### Fidelity criteria

- Irrelevant information represents a loss, so we need a mean of quantifying the nature of loss
- When the level of information loss can be expressed as a function of the original or input image and the compressed and decompressed output image, it is based on an objective fidelity criterion.
- Example : the error at any x,y

$$e(x, y) = \hat{f}(x, y) - f(x, y)$$

Approximate

The total error

$$\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left[ \hat{f}(x, y) - f(x, y) \right]$$

Original

• The square root  

$$e^{rms} = \left[\frac{1}{MN}\sum_{x=0}^{M-1}\sum_{y=0}^{N-1} \left[\hat{f}(x,y) - f(x,y)\right]^2\right]^{\frac{1}{2}}$$

The mean square signal – to – noise

$$SNR_{rms} = \frac{\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \hat{f}(x, y)^{2}}{\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left[ \hat{f}(x, y) - f(x, y) \right]^{2}}$$

## Fidelity Criteria(Subjective)

TABLE 8.3

Rating scale of the Television Allocations Study Organization. (Frendendall and Behrend.)

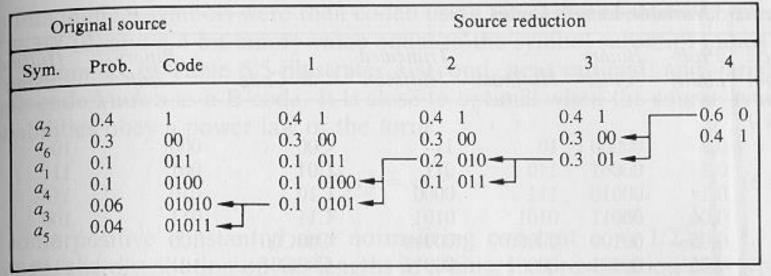
| Value | Rating    | Description                                                                                         |
|-------|-----------|-----------------------------------------------------------------------------------------------------|
| 1     | Excellent | An image of extremely high quality, as good as you<br>could desire.                                 |
| 2     | Fine      | An image of high quality, providing enjoyable<br>viewing. Interference is not objectionable.        |
| 3     | Passable  | An image of acceptable quality. Interference is not<br>objectionable.                               |
| 4     | Marginal  | An image of poor quality; you wish you could<br>improve it. Interference is somewhat objectionable. |
| 5     | Inferior  | A very poor image, but you could watch it.<br>Objectionable interference is definitely present.     |
| 6     | Unusable  | An image so bad that you could not watch it.                                                        |

#### Huffman Coding (coding redundancy)

- A variable-length coding technique.
- Optimal code (i.e., minimizes the number of code symbols per source symbol).
- Assumption: symbols are encoded one at a time!

### Huffman Coding (cont'd)

• Forward Pass


- 1. Sort probabilities per symbol
- 2. Combine the lowest two probabilities
- 3. Repeat Step2 until only two probabilities remain.

| Original source |             |       | Source r | eduction | 1205  |
|-----------------|-------------|-------|----------|----------|-------|
| Symbol          | Probability | 1     | 2        | 3        | 4     |
| a2              | 0.4         | 0.4   | 0.4      | 0.4      | - 0.6 |
| $a_2 \\ a_6$    | 0.3         | 0.3   | 0.3      | 0.3 -    |       |
| $a_1$           | 0.1         | 0.1   | 0.2      | ► 0.3 _  | 0.4   |
| $a_4$           | 0.1         | 0.1 - | 0.1      | - 0.5    |       |
| a3              | 0.06        | 0.1   | 0.11     |          |       |
| a <sub>5</sub>  | 0.04        |       |          |          |       |

### Huffman Coding (cont'd)

#### Backward Pass

#### Assign code symbols going backwards



Huffman Coding (cont'd)

#### L<sub>avg</sub> using Huffman coding:

$$L_{avg} = E(l(a_k)) = \sum_{k=1}^{6} l(a_k)P(a_k) =$$

# • L<sub>avg</sub> assuming binary codes: 6 symbols, we need a 3-bit code ( $a_1$ : 000, $a_2$ : 001, $a_3$ : 010, $a_4$ : 011, $a_5$ : 100, $a_6$ : 101) $L_{avg} = \sum_{k=1}^{6} l(a_k)P(a_k) = \sum_{k=1}^{6} 3P(a_k) = 3 \sum_{k=1}^{6} P(a_k) = 3$ bits/symbol

## Huffman Coding/Decoding

- After the code has been created, coding/decoding can be implemented using a look-up table.
  - Note that decoding is done unambiguously.

Original source

|                            | Oliginal source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | 0.00                                     |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|
| 010100111100               | Sym.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Prob.                                    | Code                                     |
| $a_3$ $a_1$ $a_2a_2$ $a_6$ | $a_2 \\ a_6 \\ a_1 \\ a_4 \\ a_3 \\ a_5 $ | 0.4<br>0.3<br>0.1<br>0.1<br>0.06<br>0.04 | 1<br>00<br>011<br>0100<br>01010<br>01011 |

Arithmetic (or Range) Coding (coding redundancy)

- Instead of encoding source symbols one at a time, sequences of source symbols are encoded together.
  - There is no one-to-one correspondence between source symbols and code words.
- Slower than Huffman coding but typically achieves better compression.

Arithmetic Coding (cont.)

A sequence of source symbols is assigned to a sub-interval in [0,1) which corresponds to an arithmetic code, e.g.,

■ We <sup>α1 α2 α3 α3 α4</sup> ➡ <sup>[0.06752, 0.0688)</sup> ➡ <sup>0.068</sup> as the number of symbols in the message increases, the interval used to represent the message becomes smaller.

arithmetic code

## Arithmetic Coding (cont.)

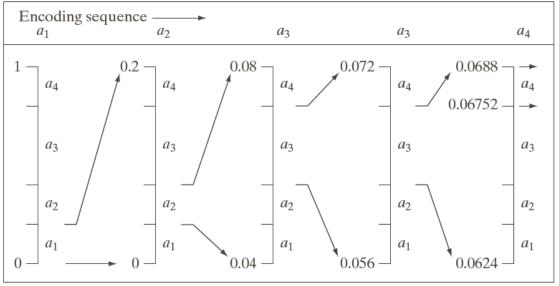
| Encode message: | $\alpha_1$ | $\alpha_2$ | $\alpha_3$ | $\alpha_3$ | $\alpha_4$ |  |
|-----------------|------------|------------|------------|------------|------------|--|
|-----------------|------------|------------|------------|------------|------------|--|

1) Start with interval [0, 1)

0

| Probability |
|-------------|
| 0.2         |
| 0.2         |
| 0.4         |
| 0.2         |
|             |

2) Subdivide [0, 1) based on the probabilities of  $\alpha_i$ 




3) Update interval by processing source symbols

| Initial Subinterval |
|---------------------|
| [0.0, 0.2)          |
| [0.2, 0.4)          |
| [0.4, 0.8)          |
| [0.8, 1.0)          |

#### Example

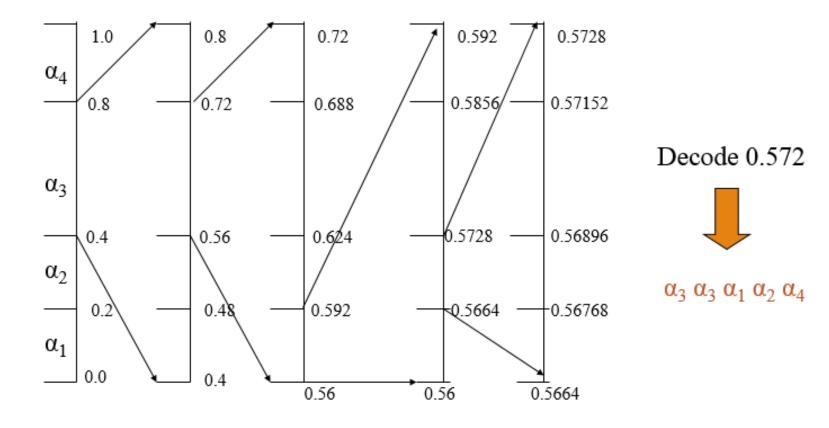
| Source Symbol         | Probability | Initial Subinterval |
|-----------------------|-------------|---------------------|
| $a_1$                 | 0.2         | [0.0, 0.2)          |
| $a_2$                 | 0.2         | [0.2, 0.4)          |
| <i>a</i> <sub>3</sub> | 0.4         | [0.4, 0.8)          |
| $a_4$                 | 0.2         | [0.8, 1.0)          |





## Example (cont.)

 $\alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_3 \ \alpha_4$ 


- The message is encoded using 3 decimal digits or 3/5 = 0.6 decimal digits per source symbol.
- The entropy of this message is:

$$H = -\sum_{k=0}^{3} P(r_k) log(P(r_k))$$

 $-(3 \times 0.2\log_{10}(0.2)+0.4\log_{10}(0.4))=0.5786 \text{ digits/symbol}$ 

Note: finite precision arithmetic might cause problems due to truncations!

#### **Arithmetic Decoding**

